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Abstract

We consider the classic Set Cover problem in the data stream model. For n elements and m
sets we give a O(1/δ)-pass algorithm with a strongly sub-linear Õ(mnδ) space and logarithmic
approximation factor1. This yields a significant improvement over the earlier algorithm of
Demaine et al. [DIMV14] that uses exponentially larger number of passes. We complement this
result by showing that the tradeoff between the number of passes and space exhibited by our
algorithm is tight, at least when the approximation factor is equal to 1. Specifically, we show
that any algorithm that computes set cover exactly using ( 1

2δ−1) passes must use Ω̃(mnδ) space.
Furthermore, we consider the problem in the geometric setting where the elements are points in
R2 and sets are either discs, axis-parallel rectangles, or fat triangles in the plane, and show that
our algorithm (with a slight modification) uses the optimal Õ(n) space to find a logarithmic
approximation in O(1/δ) passes.

Finally, we show that any randomized one-pass algorithm that distinguishes between covers of
size 2 and 3 must use a linear (i.e., Ω(mn)) amount of space. This is the first result showing that
a randomized, approximate algorithm cannot achieve a sub-linear space bound. This indicates
that using multiple passes might be necessary in order to achieve sub-linear space bounds for
this problem while guaranteeing small approximation factors.

1. Introduction

The Set Cover problem is a classic combinatorial optimization task. Given a ground set of n
elements U = {e1, · · · , en}, and a family of m sets F = {r1, . . . , rm}, the goal is to select a subset
I ⊆ F such that I covers U, i.e., U ⊆

⋃
S∈I S, and the number of the sets in I is as small as

possible. Set Cover is a well-studied problem with applications in many areas, including operations
research [GW97], information retrieval and data mining [SG09], web host analysis [CKT10], and
many others.

Although the problem of finding an optimal solution is NP-complete, a natural greedy algorithm
which iteratively picks the “best” remaining set is widely used. The algorithm often finds solutions
that are very close to optimal. Unfortunately, due to its sequential nature, this algorithm does
not scale very well to massive data sets (e.g., see Cormode et al. [CKW10] for an experimental
evaluation). This difficulty has motivated a considerable research effort whose goal was to design
algorithms that are capable of handling large data efficiently on modern architectures. Of particular
interest are data stream algorithms, which compute the solution using only a small number of
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1The notation Õ(f(n)) is a short form for O

(
f(n,m) polylog f(n,m)

)
. Similarly, Ω̃(f(n,m)) =

Ω
(
f(n,m)/polylog f(n,m)

)
.
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sequential passes over the data using a limited memory. In the streaming Set Cover problem [SG09],
the set of elements U is stored in the memory in advance; the sets r1, · · · , rm are stored consecutively
in a read-only repository and an algorithm can access the sets only by performing sequential scans
of the repository. However, the amount of read-write memory available to the algorithm is limited,
and is smaller than the input size (which could be as large as mn). The objective is to design
an efficient approximation algorithm for the Set Cover problem that performs few passes over the
data, and uses as little memory as possible.

The last few years have witnessed a rapid development of new streaming algorithms for the
Set Cover problem, in both theory and applied communities, see [SG09, CKW10, KMVV13, ER14,
DIMV14, CW16]. Figure 1.1 presents the approximation and space bounds achieved by those
algorithms, as well as the lower bounds2.

Result Approximation Passes Space R

Greedy lnn 1 O(mn)

algorithm lnn n O(n)

[SG09] O(log n) O(log n) O(n log n)

[ER14] O(
√
n) 1 Õ(n)

[CW16] O(nδ/δ) 1/δ − 1 Õ(n)

[Nis02] 1
2 log n O(log n) Ω̃(m) R

[DIMV14] O(41/δρ) O(41/δ) Õ(mnδ) R

[DIMV14] O(1) O(log n) Ω̃(mn)

Theorem 2.8 O(ρ/δ) 2/δ Õ(mnδ) R

Theorem 3.7 3/2 1 Ω(mn) R

Theorem B.4 1 1/2δ − 1 Ω̃(mnδ) R

Geometric Set Cover(Theorem A.6) O(ρg/δ) 3/δ Õ(n) R

s-Sparse Set Cover(Theorem C.6) 1 1/2δ − 1 Ω̃(ms) R

Figure 1.1: Summary of past work and our results. The last column indicates if the scheme is
randomized, ρ denotes the approximation factor of an off-line algorithm solving Set Cover, which is
lnn for the greedy, and 1 for exponential algorithm. Similarly, ρg denotes the approximation factor
of an off-line algorithm for the geometric Set Cover. We allow any δ > 0 except in the geometric
Set Cover in which δ ≤ 1

4 . Finally, in the s-Sparse Set Cover problem, s ≤ nδ denotes an upper
bound on the sizes of the input sets. Moreover, [ER14] and [CW16] proved that their algorithms
are tight. Here, and in the rest of the paper, all log are in base two.

Related work. The semi-streaming Set Cover problem was first studied by Saha and Getoor
[SG09]. Their result for Max k-Cover problem implies a O(log n)-pass O(log n)-approximation
algorithm for the Set Cover problem that uses Õ(n) space. In Õ(n) space regime, Emek and
Rosen studied designing one-pass streaming algorithms for the Set Cover problem [ER14] and gave
a deterministic greedy based O(

√
n)-approximation for the problem. Moreover they proved that

their algorithm is tight, even for randomized algorithms. The lower/upper bound results of [ER14]
applied also to a generalization of the Set Cover problem, the ε-Partial Set Cover(U,F) problem in

2Note that the simple greedy algorithm can be implemented by either storing the whole input (in one pass), or by
iteratively updating the set of yet-uncovered elements (in at most n passes).
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which the goal is to cover (1 − ε) fraction of elements U and the size of the solution is compared
to the size of an optimal cover of Set Cover(U,F). Very recently, Chakrabarti and Wirth extended
the result of [ER14] and gave a trade-off streaming algorithm for the Set Cover problem in multiple
passes [CW16]. They gave a deterministic algorithm with p passes over the data stream that
returns a (p+ 1)n1/(p+1)-approximate solution of the Set Cover problem in Õ(n) space. Moreover
they proved that achieving 0.99n1/(p+1)/(p+ 1)2 in p passes using Õ(n) space is not possible even
for randomized protocols which shows that their algorithm is tight up to a factor of (p+ 1)3. Their
result also works for the ε-Partial Set Cover problem.

In a different regime which was first studied by Demaine et al., the goal is to design a “low”
approximation algorithms (depending on the computational model, it could be O(log n) or O(1)) in
the smallest possible space [DIMV14]. They proved that any constant pass deterministic (log n/2)-
approximation algorithm of the Set Cover problem requires Ω̃(mn) space. It shows that unlike
the results in Õ(n)-space regime, to obtain a sublinear “low” approximation streaming algorithm
for the Set Cover problem in a constant number of passes, using randomness is necessary. More-
over, [DIMV14] presented a O(41/δ)-approximation algorithm that makes O(41/δ) passes and uses

Õ(mnδ) memory space.
The Set Cover problem is not polynomially solvable even in the restricted instances with points

in R2 as elements, and geometric objects (either all disks or axis parallel rectangles or fat triangles)
in plane as sets [FG88, FPT81, HQ15]. As a result, there has been a large body of work on designing
approximation algorithms for the geometric Set Cover problems. See for example [MRR14, AP14,
AES10, CV07] and references therein.

1.1. Our results

Despite the progress outlined above, however, some basic questions still remained open. In partic-
ular:

(A) Is it possible to design a single pass streaming algorithm with a “low” approximation factor3

that uses sublinear (i.e., o(mn)) space?
(B) If such single pass algorithms are not possible, what are the achievable trade-offs between

the number of passes and space usage?
(C) Are there special instances of the problem for which more efficient algorithms can be de-

signed?

In this paper, we make a significant progress on each of these questions. Our upper and lower
bounds are depicted in Figure 1.1.

On the algorithmic side, we give a O(1/δ)-pass algorithm with a strongly sub-linear Õ(mnδ)
space and logarithmic approximation factor. This yields a significant improvement over the earlier
algorithm of Demaine et al. [DIMV14] which used exponentially larger number of passes. The trade-
off offered by our algorithm matches the lower bound of Nisan [Nis02] that holds at the endpoint of
the trade-off curve, i.e., for δ = Θ(1/ log n), up to poly-logarithmic factors in space4. Furthermore,
our algorithm is very simple and succinct, and therefore easy to implement and deploy.

Our algorithm exhibits a natural tradeoff between the number of passes and space, which resem-
bles tradeoffs achieved for other problems [GM07, GM08, GO13]. It is thus natural to conjecture
that this tradeoff might be tight, at least for “low enough” approximation factors. We present the
first step in this direction by showing a lower bound for the case when the approximation factor

3Note that the lower bound in [DIMV14] excluded this possibility only for deterministic algorithms, while the
upper bound in [ER14, CW16] suffered from a polynomial approximation factor.

4Note that to achieve a logarithmic approximation ratio we can use an off-line algorithm with the approximation
ratio ρ = 1, i.e., one that runs in exponential time (see Theorem 2.8).
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is equal to 1, i.e., the goal is to compute the optimal set cover. In particular, by an information
theoretic lower bound, we show that any streaming algorithm that computes set cover using ( 1

2δ−1)
passes must use Ω̃(mnδ) space (even assuming exponential computational power). Furthermore,
we show that a stronger lower bound holds if all the input sets are sparse, that is if their cardinality
is at most s. We prove a lower bound of Ω̃(ms) for s = O(nδ).

We also consider the problem in the geometric setting in which the elements are points in R2 and
sets are either discs, axis-parallel rectangles, or fat triangles in the plane. We show that a slightly
modified version of our algorithm achieves the optimal Õ(n) space to find a O(ρ/δ)-approximation
in O(1/δ) passes.

Finally, we show that any randomized one-pass algorithm that distinguishes between covers
of size 2 and 3 must use a linear (i.e., Ω(mn)) amount of space. This is the first result showing
that a randomized, approximate algorithm cannot achieve a sub-linear space bound. This indicates
that using multiple passes might be necessary in order to achieve sub-linear space bounds while
guaranteeing small approximation factors.

1.1.1. Our techniques

Basic idea. Our algorithm is based on the idea that whenever a large enough set is encountered,
we can immediately add it to the cover. Specifically, we guess (up to factor two) the size of the
optimal cover k. Thus, a set is “large” if it covers at least 1/k fraction of the remaining elements.
A small set, on the other hand, can cover only a “few” elements, and we can store (approximately)
what elements it covers by storing (in memory) an appropriate random sample. At the end of the
pass, we have (in memory) the projections of “small” sets onto the random sample, and we compute
the optimal set cover for this projected instance using an offline solver. By carefully choosing the
size of the random sample, this guarantees that only a small fraction of the set system remains
uncovered. The algorithm then makes an additional pass to find the residual set system (i.e., the
yet uncovered elements), making two passes in each iteration, and continuing to the next iteration.

Thus, one can think about the algorithm as being based on a simple iterative “dimensionality re-
duction” approach. Specifically, in two passes over the data, the algorithm selects a “small” number
of sets that cover all but n−δ fraction of the uncovered elements, while using only Õ(mnδ) space. By
performing the reduction step 1/δ times we obtain a complete cover. The dimensionality reduction
step is implemented by computing a small cover for a random subset of the elements, which also
covers the vast majority of the elements in the ground set. This ensures that the remaining sets,
when restricted to the random subset of the elements, occupy only Õ(mnδ) space. As a result the
procedure avoids a complex set of recursive calls as presented in Demaine et al. [DIMV14], which
leads to a simpler and more efficient algorithm.

Geometric results. Further using techniques and results from computational geometry we show
how to modify our algorithm so that it achieves better bounds for the Set Cover problems on
geometric instances. In particular, we show that it gives a O(1/δ)-pass O(ρ/δ)-approximation
algorithm using Õ(n) space when the elements are points in R2 and the sets are either discs, axis
parallel rectangles, or fat triangles in the plane. In particular, we use the following surprising
property of the set systems that arise out of points and disks: the the number of sets is nearly
linear as long as one considers only sets that contain “a few” points.

More surprisingly, this property extends, with a twist, to certain geometric range spaces that
might have quadratic number of shallow ranges. Indeed, it is easy to show an example of n points
in the plane, where there are Ω(n2) distinct rectangles, each one containing exactly two points,
see Figure 1.2. However, one can “split” such ranges into a small number of canonical sets, such
that the number of shallow sets in the canonical set system is near linear. This enables us to store
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Figure 1.2: Consider two parallel lines in the plane with positive slope. Place n/2 points on each
line such that all the points on the top line lie above and to the left of all the points on the bottom
line. Let the set of rectangles for this instance be all the rectangles which have a point on the top
line as their upper left corner and a point on the bottom line as their lower right corner. Clearly,
we have n2/4 distinct rectangles (i.e., sets), each containing two points. As such, we cannot afford
to store explicitly in memory the set system, since it requires too much space.

explicitly in memory the small canonical sets encountered during the scan, and still use only near
linear space.

We note that the idea of splitting ranges into small canonical ranges is an old idea in orthogonal
range searching. It was used by Aronov et al. [AES10] for computing small ε-nets for these range
spaces. The idea in the form we use, was further formalized by Ene et al. [EHR12].

Lower bound. The lower bounds for multi-pass algorithms of the Set Cover problem are obtained
via a careful reduction from Intersection Set Chasing. The latter problem is a communication
complexity problem where n players need to solve a certain “set-disjointness-like” problem in p

rounds. A recent paper [GO13] showed that this problem requires n1+Ω(1/p)

pO(1) bits of communication

complexity for p rounds. This yields our desired trade-off of Ω̃(mnδ) space in 1/2δ passes for
exact protocols of Set Cover in the communication complexity and hence in the streaming model.
Furthermore, we show a stronger lower bound on memory space of sparse instances of Set Cover
in which all input sets have cardinality at most s. By a reduction from a variant of Equal Pointer
Chasing which maps the problem to a sparse instance of Set Cover, we show that in order to have
an exact streaming algorithm of s-Sparse Set Cover with o(ms) space, Ω(log n) passes is necessary.
More precisely, any ( 1

2δ −1)-pass exact randomized algorithm of s-Sparse Set Cover requires Ω̃(ms)
memory space, if s ≤ nδ.

Our single pass lower bound proceeds by showing a lower bound for a one-way communication
complexity problem in which one party (Alice) has a collection of sets, and the other party (Bob)
needs to determine whether the complement of his set is covered by one of the Alice’s sets. We
show that if Alice’s sets are chosen at random, then Bob can decode Alice’s input by employing a
small collection of “query” sets. This implies that the amount of communication needed to solve
the problem is linear in the description size of Alice’s sets, which is Ω(mn).
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iterSetCover((U,F), δ):

// Try in parallel all possible (2-approx) sizes of optimal cover

for k ∈ {2i | 0 ≤ i ≤ log n} do in parallel: // n = |U|
sol← ∅
Repeat for 1/δ times

Let S be a sample of U of size cρknδ logm log n
L← S, FS ← ∅
for r ∈ F do // By doing one pass

if |L ∩ r| ≥ |S|/k then // Size Test

sol← sol ∪ {r}
L← L \ r

else

FS ← FS ∪ {r ∩ L} // Store explicitly in memory the set r ∩ L

D ← algOfflineSC(S,FS, k), sol← sol
⋃
D

U← U \
⋃

r∈sol r // By doing additional pass over data

return best sol computed in all parallel executions.

Figure 1.3: A tight streaming algorithm for the (unweighted) Set Cover problem. Here, algOffli-
neSC is an offline solver for Set Cover that provides ρ-approximation, and c is some appropriate
constant.

2. Streaming algorithm for set cover

2.1. Algorithm

In this section, we design an efficient streaming algorithm for the Set Cover problem that matches
the lower bound results we already know about the problem. In the Set Cover problem, for a given
set system (U,F), the goal is to find a subset I ⊆ F , such that I covers U and its cardinality is
minimum. In the following, we sketch the iterSetCover algorithm (see also Figure 1.3).

In the iterSetCover algorithm, we have access to the algOfflineSC subroutine that solves the
given Set Cover instance offline (using linear space) and returns a ρ-approximate solution where ρ
could be anywhere between 1 and Θ(log n) depending on the computational model one assumes.
Under exponential computational power, we can achieve the optimal cover of the given instance of
the Set Cover (ρ = 1); however, under P 6= NP assumption, ρ cannot be better than c · lnn where
c is a constant [AMS06, RS97] given polynomial computational power.

Let n = |U| be the initial number of elements in the given ground set. The iterSetCover
algorithm, needs to guess (up to a factor of two) the size of the optimal cover of (U,F). To this
end, the algorithm tries, in parallel, all values k in {2i | 0 ≤ i ≤ log n}. This step will only increase
the memory space requirement by a factor of log n.

Consider the run of the iterSetCover algorithm, in which the guess k is correct (i.e., |OPT| ≤
k < 2|OPT|, where OPT is an optimal solution). The idea is to go through O(1/δ) iterations such
that each iteration only makes two passes and at the end of each iteration the number of uncovered
elements reduces by a factor of nδ. Moreover, the algorithm is allowed to use Õ(mnδ) space.

In each iteration, the algorithm starts with the current ground set of uncovered elements U,
and copies it to a leftover set L. Let S be a large enough uniform sample of elements U. In a
single pass, using S, we estimate the size of all large sets in F and add r ∈ F to the solution sol

immediately (thus avoiding the need to store it in memory). Formally, if r covers at least Ω(|U|/k)
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yet-uncovered elements of L then it is a heavy set, and the algorithm immediately adds it to the
output cover. Otherwise, if a set is small, i.e., its covers less than |U|/k uncovered elements of L,
the algorithm stores the set r in memory. Fortunately, it is enough to store its projection over the
sampled elements explicitly (i.e., r∩L) – this requires remembering only the O(|S|/k) indices of the
elements of r ∩ L.

In order to show that a solution of the Set Cover problem over the sampled elements is a good
cover of the initial Set Cover instance, we apply the relative (p, ε)-approximation sampling result
of [HS11] (see Definition 2.4) and it is enough for S to be of size O(ρknδ logm log n). Using relative
(p, ε)-approximation sampling, we show that after two passes the number of uncovered elements is
reduced by a factor of nδ.

Since in each iteration we pick O(ρk) sets and the number of uncovered elements decreases
by a factor of nδ, after 1/δ iterations the algorithm picks O(ρk/δ) sets and covers all elements.
Moreover, the memory space of the whole algorithm is O(ρmnδ logm log n) (see Lemma 2.2).

2.2. Analysis

In the rest of this section we prove that the iterSetCover algorithm with high probability returns
a O(ρ/δ)-approximate solution of Set Cover(U,F) in 2/δ passes using Õ(mnδ) memory space.

Lemma 2.1. The number of passes the iterSetCover algorithm makes is 2/δ.

Proof: In each of the 1/δ iterations of the iterSetCover algorithm, the algorithm makes two
passes. In the first pass, based on the set of sampled elements S, it decides whether to pick a set or
keep its projection over S in the memory. Then the algorithm calls algOfflineSC which does not
require any passes over F . The second pass is for computing the set of uncovered elements at the
end of the iteration. We need this pass because we only know the projection of the sets we picked
in the current iteration over S and not over the original set of uncovered elements. Thus, in total
we make 2/δ passes. Also note that for different guesses for the value of k, we run the algorithm
in parallel and hence the total number of passes remains 2/δ.

Lemma 2.2. The memory space used by the iterSetCover algorithm is Õ(mnδ).

Proof: In each iteration of the algorithm, it picks during the first pass at most m sets (more
precisely at most k sets) which requires O(m logm) memory. Moreover, in the first pass we keep
the projection of the sets whose projection over the uncovered sampled elements has size at most
|S|/k. Since there are at most m such sets, the total required space for storing the projections is
bounded by O

(
ρmnδ logm log n

)
.

Since in the second pass the algorithm only updates the set of uncovered elements, the amount
of space required in the second pass is O(n). Thus, the total required space to perform each
iteration of the iterSetCover algorithm is Õ(mnδ). Moreover, note that the algorithm does not
need to keep the memory space used by the earlier iterations; thus, the total space consumed by
the algorithm is Õ(mnδ).

Next we show the sets we picked before calling algOfflineSC has large size on U.

Lemma 2.3. With probability at least 1 −m−c all sets that pass the “Size Test” in the iterSet-
Cover algorithm have size at least |U|/ck.
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Proof: Let r be a set of size less than |U|/ck. In expectation, |r∩S| is less than (|U|/ck) · (|S|/|U|) =
ρnδ logm log n. Thus using Chernoff bound for large enough c,

Pr(|r ∩ S| ≥ (1 + (c− 1))(ρnδ logm log n)) ≤ exp

(
−(c− 1)2ρnδ logm log n

4

)
≤ (1/m)c+1.

Applying the union bound, with probability at least 1 −m−c, all sets that pass “Size Test” have
size at least |U|/ck.

In what follows we define the relative (p, ε)-approximation sample of a set system and mention
the result of Har-Peled and Sharir [HS11] on the minimum required number of sampled elements
to get a relative (p, ε)-approximation of the given set system.

Definition 2.4. Let (V,H) be a set system, i.e., V is a set of elements and H ⊆ 2V is a family of
subsets of the ground set V. For given parameters 0 < ε, p < 1, a subset Z ⊆ V is a relative (p, ε)-

approximation for (V,H), if for each r ∈ H, we have that if |r| ≥ p|V| then (1− ε) |r|
|V|
≤ |r ∩ Z|
|Z|

≤

(1+ε)
|r|
|V|

. If the range is light (i.e., |r| < p|V|) then it is required that
|r|
|V|
−εp ≤ |r ∩ Z|

|Z|
≤ |r|
|V|

+εp.

Namely, Z is (1± ε)-multiplicative good estimator for the size of ranges that are at least p-fraction
of the ground set.

The following lemma is a simplified variant of a result in Har-Peled and Sharir [HS11] – indeed,
a set system with M sets, can have VC dimension at most logM . This simplified form also follows
by a somewhat careful but straightforward application of Chernoff’s inequality.

Lemma 2.5. Let (U,F) be a finite set system, and p, ε, q be parameters. Then, a random sample

of U of size c′

ε2p

(
log |F| log 1

p + log 1
q

)
, for an absolute constant c′ is a relative (p, ε)-approximation,

for all ranges in F , with probability at least (1− q).

Lemma 2.6. Assuming |OPT| ≤ k ≤ 2|OPT|, after any iteration, with probability at least 1 −
m1−c/4 the number of uncovered elements decreases by a factor of nδ, and this iteration adds
O(ρ|OPT|) sets to the output cover.

Proof: Let V ⊆ U be the set of uncovered elements at the beginning of the iteration and note that
the total number of sets that is picked during the iteration with high probability is at most (1+ρ)k
(see Lemma 2.3). Consider all possible such covers, that is G =

{
F ′ ⊆ F

∣∣ |F ′| ≤ (1 + ρ)k
}

, and

observe that |G| ≤ m(1+ρ)k. Let H be the collection that contains all possible sets of uncovered
elements at the end of the iteration, defined as H =

{
V \

⋃
r∈C r

∣∣ C ∈ G} . Moreover, set p = 2/nδ,

ε = 1/2 and q = m−c and note that |H| ≤ |G| ≤ m(1+ρ)k. Since c′

ε2p
(log |H| log 1

p + log 1
q ) ≤

cρknδ logm log n = |S| for large enough c, by Lemma 2.5, S is a relative (p, ε)-approximation with
(1− q) probability. Let D ⊆ F be the collection of sets picked during the iteration which covers all
elements in S. Since S is a relative (p, ε)-approximation sample of (V,H) with probability at least
1−m−c, the number of uncovered elements of V (or U) by D is at most εp|V| = |U|/nδ.

Hence, in each iteration we pick O(ρk) sets and at the end of iteration the number of uncovered
elements reduces by nδ.

Lemma 2.7. The iterSetCover algorithm computes a set cover of (U,F), whose size is within a
O(ρ/δ) factor of the size of an optimal cover with probability at least 1−m1−c/4.

8



Proof: Consider the run of iterSetCover for which the value of k is between |OPT| and 2|OPT|.
In each of the (1/δ) iterations made by the algorithm, by Lemma 2.6, the number of uncovered
elements decreases by a factor of nδ where n is the number of initial elements to be covered by the
sets. Moreover, the number of sets picked in each iteration is O(ρk). Thus after (1/δ) iterations, all
elements would be covered and the total number of sets in the solution is O(ρ|OPT|/δ). Moreover
by Lemma 2.6, the success probability of all the iterations, is at least 1− 1

δmc/4
≥ 1− (1/m)c/4−1.

Theorem 2.8. The Iterative-Set-Cover(U,F , δ) algorithm makes 2/δ passes, uses Õ(mnδ) mem-
ory space, and finds a O(ρ/δ)-approximate solution of the Set Cover problem with high probability.

Furthermore, the iterSetCover algorithm matches the known lower bound on the memory space
of the streaming Set Cover problem up to a polylog(m) factor where m is the number of sets in the
input.

Proof: The first part of the proof follows from Lemma 2.1, Lemma 2.2, and Lemma 2.7.
As for the lower bound, note that by a result of Nisan [Nis02], any randomized ( logn2 )-approximation

protocol of set cover for (U,F) in the one-way communication model requires Ω(m) bits of com-
munication, no matter how many number of rounds it makes. This implies that any randomized
O(log n)-pass, ( logn2 )-approximation algorithm of Set Cover(U,F) requires Ω̃(m) space, even under
the exponential computational power assumption.

By the above, the iterSetCover algorithm makes O(1/δ) passes and uses Õ(mnδ) space to
return a O(1δ )-approximate solution under the exponential computational power assumption (ρ =

1). Thus by letting δ = c/ log n, we will have a ( logn2 )-approximation streaming algorithm using

Õ(m) space which is optimal up to a factor of polylog(m).

Theorem 2.8 provides a strong indication that our trade-off algorithm is optimal.

3. Lower Bound for Single Pass Algorithms

In this section, we study the Set Cover problem in the two-party communication model and give
a tight lower bound on the communication complexity of the randomized protocols solving the
problem in a single round. In the two-party Set Cover, we are given a set of elements U and there
are two players Alice and Bob where each of them has a collection of subsets of U, FA and FB.
The goal for them is to find a minimum size cover C ⊆ FA ∪ FB covering U with communicating
the fewest number of bits.

Our main lower bound result for the single pass protocols of Set Cover is the following theorem
which implies that the naive approach in which one party sends all of its sets to the the other one
is optimal.

Theorem 3.1. Any single round randomized protocol that approximates Set Cover(U,F) within a
factor better than 3/2 and error probability O(m−c) requires Ω(mn) bits of communication where
n = |U| and m = |F| and c is a sufficiently large constant.

We consider the case in which the parties want to decide whether there exists a cover of size 2
for U in FA ∪ FB or not. If any of the parties has a cover of size at most 2 for U, then it becomes
trivial. Thus the question is whether there exist ra ∈ FA and rb ∈ FB such that U ⊆ ra ∪ rb.

A key observation is that to decide whether there exist ra ∈ FA and rb ∈ FB such that U ⊆ ra∪ra,
one can instead check whether there exists ra ∈ FA and rb ∈ FB such that ra ∩ rb = ∅. In other
words we need to solve OR of a series of two-party Set Disjointness problems. In two-party Set
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Disjointness problem, Alice and Bob are given subsets of U, ra and rb and the goal is to decide
whether ra∩ rb is empty or not with the fewest possible bits of communication. Set Disjointness is a
well-studied problem in the communication complexity and it has been shown that any randomized
protocol of Set Disjointness with O(1) error probability requires Ω(n) bits of communication where
n = |U| [BJKS04, KS92, Raz92].

We can think of the following extensions of the Set Disjointness problem.

• Many vs One:
In this variant, Alice has m subsets of U, FA and Bob is given a single set rb. The goal is to
determine whether there exists a set ra ∈ FA such that ra ∩ rb = ∅.

• Many vs Many:
In this variant, each of Alice and Bob are given a collection of subsets of U and the goal for
them is to determine whether there exist ra ∈ FA and rb ∈ FB such that ra ∩ rb = ∅.

Note that deciding whether two-party Set Cover has a cover of size 2 is equivalent to solving the
(Many vs Many)-Set Disjointness problem. Moreover, any lower bound for (Many vs One)-Set Dis-
jointness clearly implies the same lower bound for the (Many vs Many)-Set Disjointness problem.
In the following theorem we show that any single-round randomized protocol that solves (Many vs
One)-Set Disjointness(m,n) with O(m−c) error probability requires Ω(mn) bits of communication.

Theorem 3.2. Any randomized protocol for (Many vs One)-Set Disjointness(m,n) with error
probability O(m−c) requires Ω(mn) bits of communication.

The idea is to show that if there exists a single-round randomized protocol for (Many vs One)-
Set Disjointness(n,m) with o(mn) bits of communication and error probability O(m−c), then with
constant probability one can recover mn “random bits” from o(mn) bits which is a contradiction.

Suppose that Alice has a collection of m uniformly and independently random subsets of U (in
each of her subsets the probability that e ∈ U is in the subset is 1/2). Lets assume that there
exists a single round protocol I for (Many vs One)-Set Disjointness(n,m) with error probability
O(m−c) using o(mn) bits of communication. Let algExistsDisj be Bob’s algorithm in protocol I.
Then we show that one can recover mn random bits with constant probability using algExistsDisj
subroutine and the message s sent by the first party in protocol I. The algRecoverBit which is
shown in Figure 3.1, is the algorithm to recover random bits using protocol I and algExistsDisj.

To this end, Bob gets the message s communicated by protocol I from Alice and considers all
subsets of size c1 logm and c1 logm+ 1 of U. Note that s is communicated only once and thus the
same s is used for all queries that Bob makes. Then at each step Bob picks a random subset rb
of size c1 logm of U and solve the (Many vs One)-Set Disjointness problem with input (FA, rb) by
running algExistsDisj(s, rb). Next we show that if rb is disjoint from a set in FA, then with high
probability there is exactly one set in FA which is disjoint from rb (see Lemma 3.3). Thus once Bob
finds out that his query, rb, is disjoint from a set in FA, he can query all sets r+b ∈ {rb∪ e|e ∈ U \ rb}
and recover the set (or union of sets) in FA that is disjoint from rb. By a simple pruning step we
can detect the ones that are union of more than one set in FA and only keep the sets in FA.

In Lemma 3.5, we show that the number of queries that Bob is required to make to recover FA
is O(mc) where c is a constant.

Lemma 3.3. Let rb be a random subset of U of size c logm and let FA be a collection of m random
subsets of U. The probability that there exists exactly one set in FA that is disjoint from rb is at
least 1

mc+1 .
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algRecoverBit
(
U, s

)
:

Fa ← ∅
for i = 1 to mc logm do

Let rb be a random subset of U of size c1 logm
if algExistsDisj(s, rb) = true

// Discovering the set (or union of sets) in FA disjoint from rb
r← ∅
for e ∈ U \ rb

if algExistsDisj(rb ∪ e, s) = false

r← r ∪ e
if ∃r′ ∈ Fa s.t. r ⊂ r′ // Pruning step

Fa ← Fa \ {r′}, Fa ← Fa ∪ {r}
else if @r′ ∈ Fa s.t. r′ ⊂ r

Fa ← Fa ∪ {r}
return Fa

Figure 3.1: algRecoverBit uses a protocol of (Many vs One)-Set Disjointness(m,n) to recover Alice’s sets,
FA in Bob’s side.

Proof: The probability that rb is disjoint from exactly one set in FA is

Pr(rb is disjoint from at least one set in FA)

−Pr(rb is disjoint from at least two sets in FA) ≥ (
1

2
)c logm −

(
m

2

)
(
1

2
)2c logm ≥ 1

mc+1
.

The above inequality comes from the following inequalities.

Pr(rb is disjoint from at least one set in FA) ≥ Pr(rb is disjoint from r) = (
1

2
)c logm,

where r is an arbitrary set in FA. For each set r ∈ FA, since any element is contained in r with
probability 1

2 , the probability that r is disjoint from rb is (1/2)c logm. Moreover since there exist
(
m
2

)
pairs of sets in FA, and for each pair of sets r1, r2 ∈ FA, the probability that r1 and r2 are disjoint
from rb is m−2c,

Pr(rb is disjoint from at least two sets in FA) ≤ m2 × 1

m2c
≤ 1

m2c−2 .

A family of setsM is called intersecting iff for any sets A,B ∈M either both A \B and B \A
are non-empty or both A \ B and B \ A are empty; in other words, there exists no A,B ∈ M
such that A ⊆ B. Let FA be a collection of subsets of U. We show that with high probability
after testing O(mc) queries for sufficiently large constant c, the algRecoverBit algorithm recovers
FA completely if FA is intersecting. First we show that with high probability the collection FA is
intersecting.

Observation 3.4. Let FA be a collection of m uniformly random subsets of U where |U| ≥ c logm.
With probability at least 1−m−c/4+2, FA is an intersecting family.

Proof: The probability that r1 ⊆ r2 is (34)n and there are at most m(m − 1) pairs of sets in FA.

Thus with probability at least 1−m2(34)n ≥ 1− 1/m
c
4
−2, FA is intersecting.
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By Observation 3.4 and only considering the case that FA is intersecting, we have the following
lemma.

Lemma 3.5. Let FA be a collection of m uniformly random subsets of U and suppose that |U| ≥
c logm. After testing at most mc queries, with probability at least (1− 1

m)pm
c
, FA is fully recovered,

where p is the success rate of protocol I for the (Many vs One)-Set Disjointness problem.

Proof: By Lemma 3.3, for each rb ⊂ U of size c1 logm the probability that rb is disjoint from exactly
one set in a random collection of sets FA is at least 1/mc1+1. Given rb is disjoint from exactly one
set in FA, due to symmetry of the problem, the chance that rb is disjoint from a specific set r ∈ FA
is at least 1

mc1+2 . After αmc1+2 logm queries where α is a large enough constant, for any r ∈ FA,

Pr(@ query rb that is only disjoint from r) ≤ (1− 1

mc1+2
)αm

c1+2 logm ≤ e−α logm =
1

mα

Thus after trying αmc1+2 logm queries, with probability at least (1 − 1
2mα−1 ) ≥ (1 − 1

m), for each
r ∈ FA we have at least one query that is only disjoint from r (and not any other sets in FA \ r).

Once we have a query subset rb which is only disjoint from a single set r ∈ FA, we can ask
n − c logm queries of size c1 logm + 1 and recover r. Note that if rb is disjoint from more than
one sets in FA simultaneously, the process (asking n− c logm queries of size c1 logm+ 1) will end
up in recovering the union of those sets. Since FA is an intersecting family with high probability
(Observation 3.4), by pruning step in the algRecoverBit algorithm we are guaranteed that at the
end of the algorithm, what we returned is exactly FA. Moreover the total number of queries the
algorithm makes is at most n× (αmc1+2 logm) ≤ αmc1+3 logm ≤ mc for c ≥ c1 + 4.

Thus after testing mc queries, FA will be recovered with probability at least (1− 1
m)pm

c
where

p is the success probability of the protocol I for (Many vs One)-Set Disjointness(m,n).

Corollary 3.6. Let I be a protocol for (Many vs One)-Set Disjointness(m,n) with error probability
O(m−c) and s bits of communication such that n ≥ c logm for large enough c. Then algRecover-
Bit recovers FA with constant probability success rate using s bits of communication.

Since algRecoverBit recovers mn random bits with constant probability of success (by Corol-
lary 3.6), the size of message sent by Alice, should be Ω(mn). This proves Theorem 3.2.

Proof of Theorem 3.1: As we showed earlier, the communication complexity of (Many vs One)-
Set Disjointness(m,n) is a lower bound for the communication complexity of Set Cover(U,F)
where |U| = n and |F| = m. Theorem 3.2 showed that any protocol for (Many vs One)-Set
Disjointness(n,FA) with error probability less than O(m−c) requires Ω(mn) bits of communication.
Thus any single-round randomized protocol for Set Cover with error probability O(m−c) requires
Ω(mn) bits of communication.

Since any p-pass streaming α-approximation algorithm for problem P that uses O(s) memory
space, is a p-round two-party α-approximation protocol for problem P using O(sp) bits of commu-
nication [GM08], and by Theorem 3.1, we have the following lower bound for Set Cover problem in
the streaming model.

Theorem 3.7. Any single-pass randomized streaming algorithm of Set Cover(U,F) that computes
a (3/2)-approximate solution with probability Ω(1−m−c) requires Ω(mn) memory space.
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A. Geometric Set Cover

In this section, we consider the streaming Set Cover problem in the geometric settings. We present
an algorithm for the case where the elements are a set of n points in the plane R2 and the m sets
are either all disks, all axis-parallel rectangles, or all α-fat triangles (which for simplicity we call
shapes) given in a data stream. As before, the goal is to find the minimum size cover of points
from the given sets. We call this problem the Points-Shapes Set Cover problem.

Note that, the description of each shape requires O(1) space and thus the Points-Shapes Set
Cover problem is trivial to be solved in O(m + n) space. In this setting the goal is to design an
algorithm whose space is sub-linear in O(m+n). Here we show that almost the same algorithm as
iterSetCover (with slight modifications) uses Õ(n) space to find a O(ρ/δ)-approximate solution
of the Points-Shapes Set Cover problem in O(1/δ) passes.
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A.1. Preliminaries

A triangle 4 is called α-fat (or simply fat) if the ratio between its longest edge and its height on
this edge is bounded by a constant α > 1 (there are several equivalent definitions of α-fat triangles).

Definition A.1. Let (U,F) be a set system such that U is a set of points and F is a collection of
shapes, in the plane R2. The canonical representation of (U,F) is a collection F ′ of regions such
that the following conditions hold. First, each r′ ∈ F ′ has O(1) description. Second, for each
r′ ∈ F ′, there exists r ∈ F such that r′ ∩ U ⊆ r ∩ U. Finally, for each r ∈ F , there exists c1 sets
r′1, · · · , r′c1 ∈ F

′ such that r ∩ U = (r′1 ∪ · · · ∪ r′c1) ∩ U for some constant c1.

The following two results are from [EHR12] which are the formalization of the ideas in [AES10].

Lemma A.2. (Lemma 4.18 in [EHR12]) Given a set of points U in the plane R2 and a parameter w,
one can compute a set F ′total of O(|U|w2 log |U|) axis-parallel rectangles with the following property.
For an arbitrary axis-parallel rectangle r that contains at most w points of U, there exist two
axis-parallel rectangles r′1, r

′
2 ∈ F ′total whose union has the same intersection with U as r, i.e.,

r ∩ U = (r′1 ∪ r′2) ∩ U.

Lemma A.3. (Theorem 5.6 in [EHR12]) Given a set of points U in the plane R2, a parameter
w and a constant α, one can compute a set F ′total of O(|U|w3 log2 |U|) regions each having O(1)
description with the following property. For an arbitrary α-fat triangle r that contains at most w
points of U, there exist nine regions from F ′total whose union has the same intersection with U as
r.

Using the above lemmas we get the following lemma.

Lemma A.4. Let U be a set of points in R2 and let F be a set of shapes (discs, axis-parallel
rectangles or fat triangles), such that each set in F contains at most w points of U. Then, in a
single pass over the stream of sets F , one can compute the canonical representation F ′ of (U,F).
Moreover, the size of the canonical representation is O(|U|w3 log2 |U|) and the space requirement of
the algorithm is Õ(|F ′|) = Õ(|U|w3 log2 |U|).

Proof: For the case of axis-parallel rectangles and fat triangles, first we can uses Lemma A.2 and
Lemma A.3 to get the set F ′total offline. By cheching the proofs of the lemmas, it is easy to check
that this would require Õ(F ′total) = Õ(|U|w3 log2 |U|) memory space. Then going one pass over the
stream of sets F , we can find the canonical representation F ′ by picking all the sets S′ ∈ F ′total
such that S′ ∩ U ⊆ S ∩ U for some S ∈ F . For discs however, we just make one pass over the sets
F and keep a maximal subset F ′ ⊆ F such that for each pair of sets S′1, S

′
2 ∈ F ′ their projection

on U are different, i.e., S′1 ∩ U 6= S′2 ∩ U. By a standard technique of Clarkson and Shor [CS89],
it can be proved that the size of the canonical representation, i.e., |S′|, is bounded by O(|U|w2).
Note that this is just counting the number of discs that contain at most w points, namely the at
most w-level discs.

A.2. Algorithm

The outline of the Points-Shapes-Set-Cover algorithm (shown in Figure A.1) is very similar to the
iterSetCover algorithm presented earlier in Section 2.
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algGeomSC
(
U,F , δ

)
:

for k ∈ {2i | 0 ≤ i ≤ log n} do in parallel: // n = |U|
Let L← U and sol← ∅
Repeat 1/δ times:

for r ∈ F do // Pass

if |r ∩ L| ≥ |U|/k then

sol← sol ∪ {r}
L← L \ r

S← sample of L of size cρk(n/k)δ logm log n
FS ←compCanonicalRep(S,F , |S|/k) // Pass

solS ← algOfflineSC(S,FS)
for r ∈ F do // Pass

if ∃r′ ∈ solS s.t. r′ ∩ S ⊆ r ∩ S then

sol← sol ∪ {r} and solS ← solS \ {r′}
L← L \ r

for r ∈ F do // Final Pass

if r ∩ L 6= ∅ then

sol← sol ∪ {r}
L← L \ r

return smallest sol computed in parallel

Figure A.1: A streaming algorithm for Points-Shapes Set Cover problem.

In the first pass, the algorithm picks all the sets that cover a large number of yet-uncovered
elements. Next, we sample S. Since we have removed all the ranges that have large size, in the first
pass, the size of the remaining ranges restricted to the sample S is small. Therefore by Lemma A.4,
the canonical representation of (S,FS) has small size and we can afford to store it in the memory.
We use Lemma A.4 to compute the canonical representation FS in one pass. The algorithm then
uses the sets in FS to find a cover solS for the points of S. Next, in one additional pass, the
algorithm replaces each set in solS by one of its supersets from F .

Finally, note that in the algorithm of Section 2, we are assuming that the size of the optimal
solution is O(k). Thus it is enough to stop the iterations once the number of uncovered elements is
less than k. Then we can pick an arbitrary set for each of the uncovered elements. This would add
only k more sets to the solution. Using this idea, we can reduce the size of the sampled elements
down to cρk(n/k)δ logm log n which would help us in getting near-linear space in the geometric
setting. Note that the final pass of the algorithm can be embedded into the previous passes but for
the sake of clarity we write it separately.

A.3. Analysis

By a similar approach to what we used in Section 2 to analyze the pass count and approximation
guarantee of iterSetCover algorithm, we can show that the number of passes of the algGeomSC
algorithm is 3/δ+ 1 (which can be reduced to 3/δ with minor changes), and the algorithm returns
an O(ρ/δ)-approximate solution. Next, we analyze the space usage and the correctness of the
algorithm.

Lemma A.5. The algorithm uses Õ(n) space.
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Proof: Consider an iteration of the algorithm. The memory space used in the first pass of each
iteration is Õ(n). The size of S is cρk(n/k)δ logm log n and after the first pass the size of each set
is at most |U|/k. Thus using Chernoff bound for each set r ∈ F \ sol,

Pr

[
|r ∩ S| > (1 + 2)

|U|
k
× |S|
|U|

]
≤ exp

(
−4|S|

3k

)
≤ (1/m)c+1.

Thus, with probability at least 1 −m−c (by the union bound), all the sets that are not picked in
the first pass, cover at most 3|S|/k = cρ(n/k)δ logm log n elements of S. Therefore, we can use
Lemma A.4 to show that the number of sets in the canonical representation of (S,FS) is at most

|FS| = O

(
|S|
(

3|S|
k

)3
log2 |S|

)
= O

(
ρ4k(n/k)4δ log4m log6 n

)
= O(ρ4n log4m log6 n),

as long as δ ≤ 1/4. To store each set in a canonical representation of (S,F) only constant space is
required. Moreover, by Lemma A.4, the space requirement of the second pass is Õ(|FS|) = Õ(n).
Therefore, the total required space is Õ(n) and the lemma follows.

Theorem A.6. Given a set system defined over a set U of n points in the plane, and a set of
m ranges F (which are either all disks, axis-parallel rectangles, or fat triangles). Let ρ be the
quality of approximation to the offline set-cover solver we have, and let 0 < δ < 1/4 be an arbitrary
parameter.

The algorithm algGeomSC, depicted in Figure A.1, with high probability, returns an O(ρ/δ)-
approximate solution of the optimal set cover solution for the instance (U,F). This algorithm uses

Õ(n) space, and performs 3/δ + 1 passes over the data.

Proof: As before consider the run of the algorithm in which |OPT| ≤ k < 2|OPT|. Let V be the
set of uncovered elements L at the beginning of the iteration and note that the total number of
sets that is picked during the iteration is at most (1 + c1ρ)k where c1 is the constant defined in
Definition A.1. Let G denote all possible such covers, that is G =

{
F ′ ⊆ F

∣∣ |F ′| ≤ (1 + c1ρ)k
}

. Let
H be the collection that contains all possible set of uncovered elements at the end of the iteration,
defined as H =

{
V \

⋃
r∈C r

∣∣ C ∈ G}. Set p = (k/n)δ, ε = 1/2 and q = m−c. Since for large enough

c, c′

ε2p
(log |H| log 1

p + log 1
q ) ≤ cρk(n/k)δ logm log n = |S| with probability at least 1 − m−c, by

Lemma 2.5, the set of sampled elements S is a relative (p, ε)-approximation sample of (V,H).
Let C ⊆ F be the collection of sets picked in the third pass of the algorithm that covers all

elements in S. By Lemma A.4, |C| ≤ c1ρk for some constant c1. Since with high probability S
is a relative (p, ε)-approximation sample of (V,H), the number of uncovered elements of V (or L)
after adding C to sol is at most εp|V| ≤ |U|(k/n)δ. Thus with probability at least (1 −m−c), in
each iteration and by adding O(ρk) sets, the number of uncovered elements reduces by a factor of
(n/k)δ. Therefore, after 1/δ iterations the algorithm picks O(ρk/δ) sets and with high probability
the number of uncovered elements is at most n(k/n)δ/δ = k. Thus, in the final pass the algorithm
only adds k sets to the solution sol, and hence the approximation factor of the algorithm is O(ρ/δ).

Remark A.7. The result of Theorem A.6 is similar to the result of Agarwal and Pan [AP14] – except
that their algorithm performs O(log n) iterations over the data, while the algorithm of Theorem A.6
performs only a constant number of iterations. In particular, one can use the algorithm of Agarwal
and Pan [AP14] as the offline solver.
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B. Lower bound for multipass algorithms

In this section we give lower bound on the memory space of multipass streaming algorithms of
the Set Cover problem. Our main result is Ω(mnδ) space for streaming algorithms that return
an optimal solution of the Set Cover problem in O(1/δ) passes. Our approach is to reduce the
communication Intersection Set Chasing(n, p) problem introduced by Guruswami and Onak [GO13]
to the communication Set Cover problem.

Consider a communication problem P with n players P1, · · · , Pn. The problem P is a (n, r)-
communication problem if players communicate in r rounds and in each round they speak in order
P1, · · · , Pn. At the end of the rth round Pn should return the solution. Moreover we assume private
randomness and public messages. In what follows we define the communication Set Chasing and
Intersection Set Chasing problems.

Definition B.1 (Communication Set Chasing(n, p) Problem). Set Chasing(n, p) is a (p, p−1) commu-
nication problem in which the player i has a function fi : [n] → 2[n] and the goal is to compute
~f1(~f2(· · · ~fp({1}) · · · )) where ~fi(S) =

⋃
s∈S fi(s). Figure B.1(a) shows an instance of the communi-

cation Set Chasing (4, 3).

Definition B.2 (Communication Intersection Set Chasing(n, p) Problem). The communication Inter-
section Set Chasing(n, p) is a (2p, p − 1) communication problem in which the first p players have
an instance of the Set Chasing(n, p) problem and the other p players have another instance of the
Set Chasing(n, p) problem. The output of the Intersection Set Chasing(n, p) is 1 if the solutions
of the two instances of the Set Chasing(n, p) intersect and 0 otherwise. Figure B.1(b) shows an
instance of the Intersection Set Chasing (4, 3). The function fi of each player Pi is specified by a
set of directed edges form a copy of vertices labeled {1, · · · , n} to another copy of vertices labeled
{1, · · · , n}.

f3 f2 f1

1

2

3

4

f ′
1 f ′

2 f ′
3f3 f2 f1

P1P2P3 P1P2P3 P6P5P4

(a) (b)

Figure B.1: (a) shows an example of the communication Set Chasing(4, 3) and (b) is an instance of the
communication Intersection Set Chasing(4, 3).

The communication Set Chasing problem is a generalization of the well-known communication
Pointer Chasing problem in which player i has a function fi : [n]→ [n] and the goal is to compute
f1(f2(· · · fp(1) · · · )).

[GO13] showed that any randomized protocol that solves Intersection Set Chasing(n, p) with

error probability less than 1/10, requires Ω( n1+1/(2p)

p16 log3/2 n
) bits of communication where n is sufficiently

large and p ≤ logn
log logn . In Theorem B.4, we reduce the communication Intersection Set Chasing

problem to the communication Set Cover problem and then give the first superlinear memory lower
bound for the streaming Set Cover problem.
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Figure B.2: The gadgets used in the reduction of the communication Intersection Set Chasing problem to
the communication Set Cover problem. (a)-(b) shows the construction of the gadget for players 1 to p and
(c)-(d) shows the construction of the gadget for players p+ 1 to 2p.

Definition B.3 (Communication Set Cover(U,F , p) Problem). The communication Set Cover(n, p) is
a (p, p− 1) communication problem in which a collection of elements U is given to all players and
each player i has a collection of subsets of U, Fi. The goal is to solve Set Cover(U,F1 ∪ · · · ∪ Fp)
using the minimum number of communication bits.

Theorem B.4. Any streaming algorithm that solves Set Cover(U,F) optimally with constant prob-
ability of error in (1/2δ − 1) passes requires Ω̃(mnδ) memory space where δ ≥ log logn

logn .

Consider an instance ISC of the communication Intersection Set Chasing(n, p). We construct an
instance of the communication Set Cover(U,F , 2p) problem such that solving Set Cover(U,F) op-
timally determines whether the output of ISC is 1 or not.

The instance ISC consists of 2p players. Each player 1, · · · , p has a function fi : [n]→ 2[n] and
each player p + 1, · · · , 2p has a function f ′i : [n] → 2[n] (see Figure B.1). In ISC, each function fi
is shown by a set of vertices v1i , · · · , vni and v1i+1, · · · , vni+1 such that there is a directed edge from

vji+1 to v`i iff ` ∈ fi(j). Similarly, each function f ′i is denoted by a set of vertices u1i , · · · , uni and

u1i+1, · · · , uni+1 such that there is a directed edge from uji+1 to u`i iff ` ∈ f ′i(j) (see Figure B.2(a) and
Figure B.2(c)).

In the corresponding communication Set Cover instance of ISC, we add two elements in(vji ) and

out(vji ) per each vertex vji where i ≤ p + 1, j ≤ n. We also add two elements in(uji ) and out(uji )

per each vertex uji where i ≤ p+ 1, j ≤ n. In addition to these elements, for each player i, we add
an element ei (see Figure B.2(b) and Figure B.2(d)).

Next, we define a collection of sets in the corresponding Set Cover instance of ISC. For each
player Pi, where 1 ≤ i ≤ p, we add a single set Sji containing out(vji+1) and in(v`i ) for all out-going

edges (vji+1, v
`
i ). Moreover, all Sji sets contain the element ei. Next, for each vertex vji we add a set

Rji that contains the two corresponding elements of vji , in(vji ) and out(vji ). In Figure B.2(b), the
red rectangles denote R-type sets and the curves denote S-type sets for the first half of the players.
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Similarly to the sets corresponding to players 1 to p, for each player Pp+i where 1 ≤ i ≤ p, we

add a set Sjp+i containing in(uji ) and out(u`i+1) for all in-coming edges (u`i+1, u
j
i ) of uji (denoting

f ′−1i (j)). The set Sjp+i contains the element ep+i too. Next, for each vertex uji we add a set T jp+i
that contains the two corresponding elements of uji , in(uji ) and out(uji ). In Figure B.2(d), the red
rectangles denote T -type sets and the curves denote S-type sets for the second half of the players.

At the end, we merge vi1s and ui1s as shown in Figure B.3. As we merge the corresponding
sets of vj1s (R1

1, · · · , Rn1 ) and the corresponding sets of uj1s (T 1
1 , · · · , Tn1 ), we call the merged sets

T 1
1 , · · · , Tn1 .
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Figure B.3: In (b) two Set Chasing instances merge in their first set of vertices and (c) shows the corre-
sponding gadgets of these merged vertices in the communication Set Cover.

The main claim is that if the solution of ISC is 1 then the size of an optimal solution of its
corresponding Set Cover instance SC is (2p+ 1)n+ 1; otherwise, it is (2p+ 1)n+ 2.

Lemma B.5. The size of any feasible solution of SC is at least (2p+ 1)n+ 1.

Proof: For each player i (1 ≤ i ≤ p), since out(vji+1)s are only covered by Rji+1 and Sji , at least n

sets are required to cover out(v1i+1), · · · , out(vni+1). Moreover for player Pp, since in(vjp+1)s are only

covered by Rjp+1 and ep is only covered by S1
p , all n + 1 sets R1

p+1, · · · , Rnp+1, S
1
p must be selected

in any feasible solution of SC.
Similarly for each player p + i (1 ≤ i ≤ p), since in(uji )s are only covered by T ji and Sjp+i, at

least n sets are required to cover in(u1i ), · · · , in(uni ). Moreover, considering u1p+1, · · · , unp+1, since

in(ujp+1) is only covered by T jp+1, all n sets T 1
p+1, · · · , Tnp+1 must be selected in any feasible solution

of SC.
All together, at least (2p+ 1)n+ 1 sets should be selected in any feasible solution of SC.

Next we show that if the solution of ISC is 1 then the size of an optimal solution of SC is exactly
(2p+ 1)n+ 1.

Lemma B.6. Suppose that the solution of ISC is 1. Then the size of an optimal solution of its
corresponding Set Cover instance is exactly (2p+ 1)n+ 1.

Proof: By Lemma B.5, the size of an optimal solution of S is at least (2p+1)n+1. Here we prove that

(2p+1)n+1 sets suffice when the solution of ISC is 1. LetQ = v1p+1, v
jp
p , . . . , v

j2
2 , v

j1
1 , u

`1
1 , u

`2
2 , . . . , u

`p
p , u1p+1

be a path in ISC such that j1 = `1 (since the solution of ISC is 1 such a path exists). The corre-
sponding solution to Q can be constructed as follows (See Figure B.4):

• Pick S1
p and all Rjp+1s (n+ 1 sets).
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• For each vjii in Q where 1 < i ≤ p, pick the set Sjii−1 in the solution. Moreover, for each such

i pick all sets Rji where j 6= ji (n(p− 1) sets).

• For vj11 (or u`11 ), pick the set Sj1p+1. Moreover, pick all sets T j1 where j 6= j1 (n sets).

• For each u`ii in Q where 1 < i ≤ p, pick the set S`ip+i in the solution. Moreover, for each such

i pick all sets T `i where ` 6= `i (n(p− 1) sets).

• Pick all T jp+1s (n sets).

It is straightforward to see that the solution constructed above is a feasible solution.
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Figure B.4: In (a), path Q is shown with black dashed arcs and (b) shows the corresponding cover of path
Q.

Next we show that if the size of an optimal cover of S is (2p+ 1)n+ 1 then the solution of ISC
is 1.

Lemma B.7. Suppose that the size of an optimal solution of the corresponding Set Cover instance
of ISC, SC, is (2p+ 1)n+ 1. Then the solution of ISC is 1.

Proof: As we proved earlier in Lemma B.5, any feasible solution of SC picks R1
p+1, · · · , Rnp+1, S

1
p

and T 1
p+1, · · · , Tnp+1. Moreover, we proved that for each 1 ≤ i < p, at least n sets should be selected

from R1
i+1, · · · , Rni+1, S

1
i , · · · , Sni . Similarly, for each 1 ≤ i ≤ p, at least n sets should be selected

from T 1
i , · · · , Tni , S1

p+i, · · · , Snp+1. Thus if a feasible solution of SC, OPT, is of size (2p+ 1)n+ 1, it
has exactly n sets from each specified group.

Next we consider the first half of the players and second half of the players separately. Consider
i such that 1 ≤ i < p. Let Sj1i , · · · , S

jk
i be the sets picked in the optimal solution (because of ei there

should be at least one set of form Sji in OPT). Since each out(vji+1) is only covered by Sji and Rji+1,

for all j /∈ {j1, . . . , jk}, Rji+1 should be selected in OPT. Moreover, for all j ∈ {j1, · · · , jk}, Rji+1

should not be contained in OPT (otherwise the size of OPT would be larger than (2p+ 1)n+ 1).
Consider j ∈ {j1, . . . , jk}. Since Rji+1 is not in OPT, there should be a set S`i+1 selected in OPT

such that in(vji+1) is contained in S`i+1. Thus by considering Sis in a decreasing order and using

induction, if Sji is in OPT then vji+1 is reachable form v1p+1.

Next consider a set Sjp+i that is selected in OPT (1 ≤ i ≤ p). By similar argument, T ji is not in

OPT and there exists a set S`p+i−1 (or S`1 if i = 1) in OPT such that out(uji ) is contained in S`p+i−1.

Let u`1i+1, · · · , u
`k
i+1 be the set of vertices whose corresponding out elements are in Sjp+i. Then by

induction, there exists an index r such that vr1 is reachable from v1p+1 and ur1 is also reachable

from all u`1i+1, · · · , u
`k
i+1. Moreover, the way we constructed the instance SC guarantees that all sets

S1
2p, · · · , Sn2p contains out(u1p+1). Hence if the size of an optimal solution of SC is (2p+1)n+1 then

the solution of ISC is 1.
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Corollary B.8. The solution of Intersection Set Chasing(n, p) is 1 iff the size of optimal solution
of its corresponding Set Cover instance (as described in this section) is (2p+ 1)n+ 1.

Next we prove the main theorem of this section, Theorem B.4.

Observation B.9. Any `-pass streaming algorithm of Set Cover, I, that solves the problem opti-
mally with a probability of error err and consumes O(s) memory space, solves the corresponding
communication Set Cover problem in ` rounds using O(s`2) bits of communication with probability
error err.

Proof: Starting from player P1, each player runs I over its input sets and once Pi is done with its
input, she sends the working memory of I publicly to other players. Then next player starts the
same routine using the state of the working memory received from the previous player. Since I
solves the Set Cover instance optimally after ` passes using O(s) space with probability error err,
applying I as a black box we can solve P in ` rounds using O(s`2) bits of communication with
probability error err.

Proof of Theorem B.4: By Observation B.9, any `-round O(s)-space algorithm that solves the
streaming Set Cover(U,F) optimally can be used to solve the communication Set Cover(U,F , p)
problem in ` rounds using O(s`2) bits of communication. Moreover, by Corollary B.8, we can
decide the solution of the communication Intersection Set Chasing(n, p) by solving its corresponding
communication Set Cover problem. Note that while working with the corresponding Set Cover
instance of Intersection Set Chasing(n, p), all players know the collection of elements U and each
player can construct its collection of sets Fi using fi (or f ′i).

However, by a result of [GO13], we know that any protocol that solves the communication In-
tersection Set Chasing(n, p) problem with probability of error less than 1/10, requires Ω( n1+1/(2p)

p16 log3/2 n
)

bits of communication. Since in the corresponding Set Cover instance of the communication Inter-
section Set Chasing(n, p), |U| = (2p+1)×2n+2p = O(np) and |F| ≤ (2p+1)n+2pn = O(np), any
(p − 1)-pass streaming algorithm that solves the Set Cover problem optimally with a probability

of error at most 1/10, requires Ω( n1+1/(2p)

p18 log3/2 n
) bits of communication. Then using Observation B.9,

since δ ≥ log logn
logn , any ( 1

2δ − 1)-pass streaming algorithmof Set Cover that finds an optimal solution

with error probability less than 1/10, requires Ω̃(|F||U|δ) space.

C. Tight Lower Bound for Sparse Set Cover Problem in Multiple
Passes

In this part we give a stronger lower bound for the instances of the streaming Set Cover problem
with sparse input sets. An instance of the Set Cover problem is s-Sparse Set Cover, if for each set
r ∈ F we have |r| ≤ s. We can us the same reduction approach described earlier in Section B to
show that any (1/2δ−1)-pass streaming algorithm of s-Sparse Set Cover requires Ω(|F|s) memory
space if s < |U|δ. To prove this, we need to explain more details of the approach of [GO13] on
the lower bound of the communication Intersection Set Chasing problem. They first obtained a
lower bound for Equal Pointer Chasing(n, p) problem in which two instances of the communication
Pointer Chasing(n, p) are given and the goal is to decide whether these two instances point to a
same value or not; fp(· · · f1(1) · · · ) = f ′p(· · · f ′1(1) · · · ).

Definition C.1 (r-non-injective functions). A function f : [n] → [n] is called r-non-injective if there
exists A ⊆ [n] of size at least r and b ∈ [n] such that for all a ∈ A, f(a) = b.
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Definition C.2 (Communication Pointer Chasing(n, p) Problem). Pointer Chasing(n, p) is a (p, p−1)
communication problem in which the player i has a function fi : [n] → [n] and the goal is to
compute f1(f2(· · · fp(1) · · · )).

Definition C.3 (Communication Equal Limited Pointer Chasing(n, p) Problem). The communication
Equal Pointer Chasing(n, p) is a (2p, p−1) communication problem in which the first p players have
an instance of the Pointer Chasing(n, p) problem and the other p players have another instance of the
Pointer Chasing(n, p) problem. The output of the Equal Pointer Chasing(n, p) is 1 if the solutions
of the two instances of Pointer Chasing(n, p) have the same value and 0 otherwise. Furthermore in
Equal Limited Pointer Chasing(n, p, r), if there exists r-non-injective function fi, then the output
is 1. Otherwise, the output is the same as the value in Equal Pointer Chasing(n, p).

For a boolean communication problem P, ORt(P) is defined to be OR of t instances of P and
the output of ORt(P) is true iff the output of any of the t instances is true. Using a direct
sum argument, [GO13] showed that the communication complexity of ORt(Equal Limited Pointer
Chasing(n, p, r)) is t times the communication complexity of Equal Limited Pointer Chasing(n, p, r).

Lemma C.4 ([GO13]). Let n, p, t and r be positive integers such that n ≥ 5p, t ≤ n
4 and

r = O(log n). Then the amount of bits of communication to solve ORt( Equal Limited Pointer
Chasing(n, p, r)) with error probability less than 1/3 is Ω( tn

p16 logn
)−O(pt2).

Lemma C.5 ([GO13]). Let n, p, t and r be positive integers such that t2prp−1 < n
10 . Then

if there is a protocol that solves Intersection Set Chasing(n, p) with probability of error less than
1/10 using C bits of communication, there is a protocol that solves ORt( Equal Limited Pointer
Chasing(n, p, r)) with probability of error at most 2/10 using C + 2p bits of communication.

Consider an instance of ORt(Equal Limited Pointer Chasing(n, p, r)) in which t ≤ nδ, r =
log(n), p = (1/2δ − 1) where 1/δ = o(log n). By Lemma C.4, the required amount of bits of
communication to solve the instance with constant probability of success is Ω̃(tn). Then by applying
Lemma C.5, to solve the corresponding Intersection Set Chasing, Ω̃(tn) bits of communication is
required.

In the reduction of ORt(Equal Limited Pointer Chasing(n, p, r)) to Intersection Set Chasing(n, p)
(proof of Lemma C.5), the r-non-injective property is preserved. In other words, in the corre-
sponding Intersection Set Chasing instance each player’s functions fi : [n] → 2[n] is union of t
r-non-injective functions fi(a) := fi,1(a) ∪ · · · ∪ fi,t(a)5. Given that none of the fi,j functions is
r-non-injective, the corresponding Set Cover instance will have sets of size at most rt (S-type sets
are of size at most t for 1 ≤ i ≤ p and of size at most rt for p + 1 ≤ i ≤ 2p). Since r = O(log n),
the corresponding Set Cover instance is Õ(t)-sparse. As we showed earlier in the reduction from
Intersection Set Chasing to Set Cover, the number of sets in the corresponding Set Cover instance
is O(np). Thus we have the following result for s-Sparse Set Cover problem.

Theorem C.6. For s ≤ |U|δ, any streaming algorithm that solves s-Sparse Set Cover(U,F) opti-
mally with probability of error less than 1/10 in ( 1

2δ − 1) passes requires Ω̃(|F|s) memory space.

5The Intersection Set Chasing instance is obtained by overlaying the t instances of Equal Pointer Chasing(n, p, r).
To be more precise, the function of player i in instance j is πi,j ◦ fi,j ◦ π−1

i+1,j (π are randomly chosen permutation
functions) and then stack the functions on top of each other.
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